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First. What iIs your background?
Think about where you fit In these lists:

Math
Graduate student Physics
Post Doc Chemistry
Beyond Post Doc Biology

Medicine



Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice”

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

» Describe the importance of symmetry to diffraction

* Qutline the structure-solving methods -- heavy atoms and
MADnNess



The 1dea here:

* Firstly, we’re going to try to understand how things
work.

e Then we’ll try to use that understanding to figure
out how to solve a few problems one might meet in
doing crystallography.

 Perhaps then you’ll be able to solve many
problems in crystallography.



The 1dea here:

* We’re not going to spend time working through how to
solve problems in crystallography.

* Instead, we’re going to try to understand how things work.

* If we can understand, then we can figure out how to solve
almost any problem.



Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice”

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

» Describe the importance of symmetry to diffraction

» Qutline the structure-solving methods -- heavy atoms and
MADnNess



Creation of a molecule’s image from a crystal has
similarities to creating an image with a lens
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You already understand a little about how lenses work
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LIGHT

Maybe you didn’t know ...
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We use a crystal to give us diffraction, and
computation to do the rest of the work of the lens.
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We’ll see that the diffraction pattern
gives information about the
dimensions and periodicity of each
view of the object.



Why do we use x-rays?

* The features we’re trying to see are on the
order of the distance between atoms: 10-1
meters.

» To “see” the atoms, we need to use light
with a wavelength that Is near to this
distance.

« X-Rays (x-ray light) have a suitable
wavelength.

 The x-rays are scattered by the electrons on
the atoms so what we see Is the electrons.



What Is a crystal?

» Acrystal Is a periodic arrangement of objects
(molecules) repeating in two or three dimensions.

 The repeating unit is a parallelepiped (in 3-D) or
a parallelogram (in 2-D).

» A crystal of a typical protein will be half a mm on
a side and contain 10*> molecules.



Here’s one choice of repeating unit
In this crystal made of apple trees

Parallelograms
defining crystal
repeat.
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We could make a different
choice of repeating unit

In both cases the repeating unit (Unit Cell)
has the same AREA, or VOLUME for a
three-dimensional crystal.

Other
parallelograms
defining crystal
repeat.



Why do we use crystals when we’d
like to see one molecule?

« We can’t focus enough x-rays into a small enough
volume to “see” a molecule. We use lots of
molecules in a crystal to get a bigger target.

 Even If we could focus them, the x-rays would
burn up the molecule.

e Even If that would work, we don’t have a lens
for the x-rays.

 The crystal amplifies the signal, and gives us a
way to get the phase information back.



Let’s return to our crystal made of
apple trees, and define “planes” in
that crystal.



We can slice the crystal at lattice points:
all planes pass through the same apple

I
i
o



And at other angles. Notice:
» planes all pass by the same apple;

e the “stuff” between pairs of planes 1s always the same.
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Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice™

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

« Describe the importance of symmetry to diffraction

« Outline the structure-solving methods -- heavy atoms and
MADnNess



Diffraction — Let’s do a thought experiment.

« Think of the material between the lattice planes as just two
atoms, suspended in space.

« Send a beam of x-rays at these atoms.

« If the angle is just right for the wavelength and distance
between the atoms, the scattered x-rays will be in phase, and
they will interfere constructively.

~J
L ~

In phase /\/1/ f\f\J In phase



On the other hand, if things are not right,
they won’t be in phase, and there will be no
constructive interference, no diffraction.
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Now, as we think of the stuff between the lattice
planes as being like each of those two atoms, we try to
write a law that will show conditions to get diffraction.

pxrr ¥



Now get rid of
the orchard...
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Bragg’s Law describes diffraction as reflection from planes

2=1J sin®

And waves
exit in phase

Waves come in
“in phase.” The wave travels exactly one wavelength to
take the little detour



Watch what happens as we go from maximum
to minimum diffracting position and back.

o 30=2'30'sin(30.0)

Lambda Distance Theta
0

See: www.journeysunysbedu/ProjectJava/Bragg/home.html
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We have a way to “index” planes in a paralellepiped to
give a unigque description of them.

Notice: By the way we define these planes, for every family of
planes, at least one of them passes through the origin of the unit

= cell. e
|~ The unit cell is a parallelepiped. Every corner is an origin of a unit

cell, since all are identical.

MPICULTO TTItV

which each
plane cuts the
— axis of the “unit
N cell” of the

. (2,2,00or(-2,-2,0) Crystal —_ the
smallest
repeating unit

x : that makes up
VL, @2 rean) the crystal.




Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

« Describe the importance of symmetry to diffraction

« Outline the structure-solving methods -- heavy atoms and
MADnNess



To relate the planes in the crystal lattice to the points In
the diffraction pattern, we make Ewald’s construction.

We have that sin 8 = (OA/2)/(1/A) = AxOA/2, or A = 2 sin 6/0A.

Compare this to Bragg’s Law: A = 2d sin 0.
We take 1/OA as being equivalent to d.
Notice the reflection plane, and that OA is perpendicular to it.

The Ewald construction exists In
a space with dimensions of
reciprocal distance!

\\!
\'“  This defines Reciprocal Space!

o~ The vector of length 1/d is
perpendicular to the reflecting
plane that lies 6 from the “rays.”

\/The Ewald Sphere



First, let’s understand what’s happening in the real
experiment, then we’ll try to understand the
reciprocal business. '

Reflecting
Plane

pxrr ¥
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................................ 4 Bragg S Law 1S obeyed

.......

......

diffraction occurs when
a vector of length 1/d,,,,
which is perpendicular
to the lattice planes
(hkl), touches the
Ewald sphere of radius
1/A.



A little trigonometry:

We’ll call
this vector

Remember,
this is a
sphere.

............................ >
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......
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A/ F =1tan(20)
A = 2d sin(0)

We can get the
d-spacing for
the reflection.




How can we define this vector that is perpendicular to
the Bragg plane, and has a length that is the reciprocal
of the distance between the planes?

We’ll define the edges of a unit cell with three vectors.
Start with a and b. We know that the cross product of two
vectors lies perpendicular to the plane of the two vectors.

This is the direction we want. The amplitude of a b Is the
area of the parallelogram defined by the vectors:

axb = ab sina

b
A/‘\/v > \_/Area = |axb|
d

o




We’ve described the base of the unit cell of the crystal by
two vectors a and b, and the area of the base is the amplitude
of the cross product of a and Db.

Now we’ll include the third vector c. We want to know the
spacing d ), between the ab planes [the (001) lattice planes]. It
must be the projection of ¢ on the vector axb. We know that we
get the product of the projection of one vector on another
with the vector dot product: (axb)-c.

———————————————————————————————————————

______________________________________

/_\\ (001) plane
»,'/I \_/Area — |a)(b|

d(001)
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So axb-e, known as a vector triple product, is the area of ab
times d ), the spacing between the planes. That, of course Is
the VVolume of the unit cell. If we divide this quantity into the
area, we get the reciprocal of the spacing, which is what we

want!!

1/d (g1 = Area/Volume = [sqq| = |2 b/ axbecl =€

————————————————————————————————————————

, axb

d(001)
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So the reciprocal lattice vector that represents the (001)
planes is

Spor = axb/axb-c and [Syp;| = 1/d g0y

We define each axial reciprocal lattice vector as a reciprocal
unit cell axis:

S100 = @ So10 =D Soo1 = C

axb

pxrr ¥
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Let’s be sure this is perfectly clear:

We define each principal reciprocal lattice vector
as a reciprocal unit cell axis:

a" =S50 = bxc/axb.c and |[s;y| = 1/d(100)
b™=s5,,,= cxa/axb-c and |[Syo = 1/d(010)
C =S, = axb/axb-c and [sqqy| = 1/dgqy



These allow us to define reciprocal-lattice vectors:
Sp = ha” + kb* + Ic*

Bragg’s Law 1s obeyed — diffraction will occur — when

the s vector of length 1/d,,, that is perpendicular to the

lattice plane (hkl)

touches the Ewald
sphere of radius 1/A.

Shki

So we need not think
about Bragg planes
again, we think only
of reciprocal-lattice
vectors and the Ewald
Sphere of reflection.

A A proteir
\\ rystallography



Remember our comparison between
diffraction and lens imaging...
LIGHT Detector

Fourier

XRays % — | computer ’Synthesis
All rays Iem

the same direction... ...end up togel The diff’n plane exists
Object in reciprocal space,
Lens the object and image
Visible : are in real sp/ace
|
|
—_—
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Diffraction Image
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Now we use the Taylor and Lipson figures to see how the
contents of the crystal relate to the diffraction pattern.

Notice (1)
The sym-
metry, and
(2) how the
continuous
diffraction
pattern of
one molec-
ule (b) is
“sampled”
by the lat-
tice of dif-
fraction

Coordinates of points

crystal e diffraction points.

pxr W 3 . Plate 2 from Taylor and Lipson -- Optical Transforms



Do we understand the real/reciprocal lattice idea?

Confirm that the

vectors
Crystal — perpendicular to
Real Lattice the Crystal-
Lattice planes are
parallel to the
Reciprocal
Diffraction — L attice vectors,
Reciprocal and that the
|_attice reciprocal

distances make
sense.

pxrr ¥
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Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

» Glve some idea how we might actually measure
diffraction data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

« Describe the importance of symmetry to diffraction

e Outline the structure-solving methods -- heavy atoms and
MADnNess



Remember the geometry -- if the Bragg
nlanes lie angle 6 from the incident x-ray
peam, the total diffraction angle will be 20.
We can make an instrument to exploit that
geometry.




And Remember the objective — We must
view the molecule from every direction to
recreate a three-dimensional image:

» WWe must obtain diffraction from all of the
Bragg planes;
» We must sample all of the reciprocal lattice.



My first data were collected with a Weissenberg
Camera 4/-yrs ago.

(c)

Inclination
axis

Incident |
beam

D (b)

Layer line
screen

A complicated
machine to simplify
our view of
reciprocal space.

One rotates the
crystal around a real
lattice vector.




The Weissenberg photograph gives a wonderfully
distorted, but organized, view of reciprocal space.

/ .f

| Figure 5.23. Weissenberg photograph showing indexed reciprocal lattice lines.
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Martin Buerger devised a camera geometry
that preserved the shape of reciprocal space.

Plane of
r.L.points

Plane of

Plane of
rl.points

It's an even
more
complicated
machine to
simplify our view
of reciprocal
space further.

Mount x-tals
with a real
crystal axis
parallel to the
beam.



R
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An antique precession photo of Chymotripsin, courtesy of David M Blow

The precession
photograph
allows us to
view the
diffraction
pattern of the
crystal lattice as
an undistorted
pattern of spots.



How can we leal
cell from a prece

It’s easy, because t

So from this we hi

Or

from this, with the film
perpendicular to the
beam.

Remember, it’s different /
o RN

------

A/ F =tan(20)
L =2dsin(0)

pti‘ rr
A oter




Notice the
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counterweight
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t only
lattice
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Figure 5.59. Precess
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The automated Eulerian cradle decreased the labor, but
still one measured reflections one at a time. (45yrs ago)

=
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Uli Arndt and Alan Wonacott invented the automated
rotation camera. Still x-ray film, but very much more

efficient.

Bram Schierbeek, Bruker-AXS



Another Uli Arndt invention was a video-based detector

The screen was small, but it was very sensitive and could read out
continuously — the x-tal just kept rotating as images came out.

(23yrs ag0) mm

Bram Schierbeek,
Bruker-AXS
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An important advance was photoluminescent imaging plates.
MAR research, followed by Rigaku, made a successful camera
that worked like electronic x-ray film, but much better. (21 yrs)

Unrocordod Imaging Plate

~———Rakb!ril:.lw

SRS Svoo

X-ray Photons

l Stored Image

, ! t ;
l i i ' Exposure

He Ne Laser Beam Scanmng

r I
L { ' ! l i——Excitation light
i e pndrd | 0':',4‘.'- + (633nm)
“I Luminescence
(400m)
Visible Ligh
Plale is —
ready for 2
use again 7 i .
B LN SR b O
: : : Erasing

Fque 15 The process of recording an x-ray radiation image on an imaging i
phte and subsequent read-out and erasure.




The advance that made possible our modern detectors
was made by Ed Westbrook, Sol Gruner, and others:
bonding of a charge-coupled device to a fiber-optic taper
with an x-ray sensitive phosphor in front. (17yrs ago)

PHOSPHOR
SCREEN FIBEROPTIC TAPER

- 7

/

12keV X-ray —» 650 [ph —> 35Iph —>» 10 e-




Several of these can be bonded together to make a large
detector... (13yrs ago)




lee thls one. made
for us by Walter
Phillips

.;ﬁﬁw




And the modern commercial versions are large,
fast, and very accurate. (8yrs ago)

Detectors like these are the basis for
modern, high-throughput crystallography!

! | \I
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This 1s the next generation. It is noise free, and can
produce images at 10 per second. (1lyr ago)
This detector will be supplanted in 2-3 years by one that
frames at 10,000 Hz!

The Pilatus 6M

(six million pixels)

Made by Dectris, a spin-
off of the Paul Scherer
Inst. (Switzerland’s
answer to Brookhaven
National Laboratory)

bnl \
pXrr v
protein



ook at how the reflections are generated In
the diffraction pattern.

The planes of

SPOTS in reciprocal
space appear as circles
of spots on an area-
sensitive x-ray
detector (film, IP,
CCD-based, etc.)

Z. Dauter




As the
crystal Is

rotated, the
circles are
extended Into
“lunes”

Z.DGUW\



Rotation sweeps out a strangely-
shaped volume. However...

« Many r.l. points will be
recorded during a single short
rotation. |
 Contiguous rotations will cover
much of the reciprocal lattice.

* The “camera” 1s simple: an

axis, a film (or electronic
detector), and a shutter.

e [t’s easy to substitute a range of
detectors.




Let’s look at a series of images from a CCD-
based detector, each representing one degree ..
of crystal rotation =~ . -
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The position of the reciprocal-lattice points can
be nicely related to the coordinates

of reflections on the film/detector

Sphere of
reflexion

X-ray beam
-

—FiLM




Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the
diffraction pattern

 Conversely, show how to calculate the structure from the
diffraction

« Describe the importance of symmetry to diffraction

e Outline the structure-solving methods -- heavy atoms and
MADnNess



Now we use the Taylor and Lipson figures to see how the
contents of the crystal relate to the diffraction pattern.

Notice (1)
The sym-
metry, and
(2) how the
continuous
diffraction
pattern of
one molec-
ule (b) is
“sampled”
by the lat-
tice of dif-
fraction

Coordinates of points

crystal e diffraction points.

pxr W 3 . Plate 2 from Taylor and Lipson -- Optical Transforms



Review: Do we understand the real/reciprocal

lattice idea?
- Confirm that the
vectors
Crystal — perpendicular to
Real Lattice the Crystal-
Lattice planes are
parallel to the
Reciprocal
Diffraction — L attice vectors,
Reciprocal and that the
|_attice reciprocal

distances make
sense.
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Here’s another (2D) example with an asymmetric motif

Each spot
representS\the
Intensity of
reflection
from one set
of planes
cutting
through the
crystal

Note the
Inversion
symmetry

Plate 26 from Taylor and Lipson -- Optical Transforms




To calculate the structure factor we need to think of wave-like
X-rays interacting with atoms. Remember that we can use an
x/y graph to represent the phase and amplitude of a wave:

N

A.

Phase
angle ¢

A

A

And then we describe the “wave” as a complex number:
f=A,{cosp +isinp} and
f=A, e



» The amplitude of scattering depends on the
number of electrons on each atom.

» The phase depends on the fractional distance it
lies from the lattice plane.

Randy Read R
Atomic structure factors

add as complex numbers,
or vectors.

Scattering from
lattice planes

pxrr ¥



We can write an expression to describe this

diffraction from atoms in a

The scattering amplitude (the structure factor)
for an individual atom is going to be:

~rryictal

Notice that A and the
unit cell parameters are
NOT part of this.

The hkl describe
/ the Bragg Planes

fon = f é:)(]::v[Z'zt't(l’t)cJr + ky; + 12.,)]

The 2rrand the fractional

The scattering power of the coordinates x; take care of
atom, ~ the number of electrons the phase angle

And the structure factor for a crystal of atoms

Fiy = Z f eXp 271'!(/’1)(, +- ltyj

utumu

will be:

+ 7))

The strength of scattering from each atom



Does this expression for the
Structure Factor make sense?

N

\ \

Try it with an example: a crystal with \ “ﬂ\

three atoms. What are the phases of 2 -. " \

scattering from each atom? Use this \ 3 \ ~
fimr = f; expl2mithx; + ky; + Iz)] \ !

For these planes, (h, k) = (3, 2)

Foratom 1. x,y =2/3,0: So2n(hx+ky)=2n(3x2/3+2x0)=4n=0
The atom is on the plane, so this makes sense.

Foratom 2. x,y =0, 1/2: So2n(hx+ky)=2n(83x0+2x1/2)=2n=0
Again, the atom is on the plane, so this makes sense.

Foratom 3. X,y =1/3,1/4: So2n(hx+ky)=2rn(3x1/3+2x1/4)=3n="=
The atom lies half-way between two planes, so this makes sense.

pxrr ¥



We can see how the structure factors
from individual atoms add up.

Wave Complex Vector Complex number

1 /\/ o f,=1+0i

2 f//\ N f, =0+ 0.5i

J — — fa=-0.2 + 0.2i

4 7/\ 7 fo,m = 0.8 +0.7i
|



See also:

http://www.ysbl.york.ac.uk/~cowtan/
sfapplet/sfintro.html Structure Factor Tutorial
fourier/fourier.html Book of Fourier



http://www.ysbl.york.ac.uk/~cowtan/

Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the idea of “The Reciprocal Lattice”

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

« Describe the importance of symmetry to diffraction
« Outline the structure-solving methods -- heavy atoms and
MADnNess



Q: How do we perform the second

Interference step in the functioning of the lens

-- to reconstruct the image of the original

object? | A

A: We will have to calculate it. = == XI

\

Q: How will we represent that object?
A: The x-rays are scattered from electrons In
the atoms of the crystal.

Therefore: for us, the “Iimage” is going to be a
representation of the electron density:.



The structure factor and the electron density
function are Fourier inverses of one another

Fu = fv p(x,y,z) exp[+2wi(hx + ky + 1z)}1 dV

A
plx,y,z) = % 2 z E Fpr expl—2mithx + ky + [z)]
, |

fr= —x k

There’s Phase
Object Interference at these
Lens | two planes.
Visible 7 \
- |

Diffraction Image
piirr plane plane




How does Fourier synthesis work?

Can we produce a trial structure and see how

waves can be summed to give this structure
back?

f(x]-T

L f\l\'\m mﬁﬂ_
]



In the Fourier Synthesis, just a few waves suffice to give a
reasonable approximation to the original pattern

n A 9 4 >

0 1.00 0 ) |

1 .21 0.67 /\/ N
;;’“\

2 046  0.8n AN Ty
/

J 0.32 0.99r — N TN / /

4 0.26 0.87 AAAA /\/-

) 0.29 1.3n A j V\'\
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What is the concept of
“resolution?”

Here Is the Fourier
synthesis function:

[ i .
Hx) = Yor f_x F(h)e "™ dh

When the limits of the
summation are not so
great, information is
lost in the synthesized

structure.
: ‘\\«f\\ ‘. ] We say t_hat the
BB “resolution” equals the
A XA \t\\ d-spacing of the

AR W MR MR MR M
\\\\\\\ :

smallest Bragg planes.



pxrr ¥
A A\ .“‘ “ r —

Resolution: The d-spacing of the highest
order Bragg planes included in the Fourier
synthesis.  Small d-spacing Is good.

3.0 Ang (370 refl’s) 4.0 Ang (160 refl’'s)  Graphicsby

Phil Evans



Another example.

The famous Taylor
and Lipson rubber
ducky.




Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice™

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

« Outline the structure-solving methods -- heavy atoms and
MADnNess



Symmetry of crystals

We’ll take some of our examples
from David Blow’s book.

Symmetry: An operation of
rotation, translation, inversion,
mirroring, or some combination
of these that takes an object back

Into itself.
* The simplest symmetry in a crystal
IS repetition.

 The repeated motif may have Its
own symmetry.

Outline of
Crystallography
for Biologists =
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You know symmetry when you see it!

pier MY / o ~___http:/lwww.mcescher.com/Gallery/gallery-
N GRAPHICS BY M.C. ESCHERymmetry.htm




Can we 1dentify symmetry elements?

_/' <

GRAPHICS BY M.C. ESCHER



What about here?

€27

bnl \ /
pxrr



And here?

pXrr (

W\ Zx

w  GRAPHICS BY M.C. ESCHER




And here?
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Symmetry Groups

Note: If one adds
one axis, this
generates a third.

Fig. 2.18 The point groups that can exist in protein crystals.

Biological
molecules are all
chiral, or
“handed,” so only
rotation and
translation
symmetry are
permissible.

Here are the
combinations
(groups) of
symmetries one
finds In
macromolecular
crystals.



What is a Group?

Elements in a group must obey certain properties:

» There must be the identity element.

» The combination of any two elements must generate
an element of the group. This is called closure.

* Number of elements = number of objects repeated =
order of the group.

 Every element in the group must have an inverse.

3x32=] 322
3
\

32 = 3-1 .
3x2=2 2 2
Point Group is 32 N




Simple crystal symmetry

The simplest crystal
would contain a single
asymmetric object
repeated by translational
repetition only, like our
apple orchard.




More complicated crystal symmetry

A crystal could contain a symmetric object, also
repeated by translational repetition.

Fig. 2.35 A symmetrical dimer.

Fig. 2.36 The smallest unit of the
structure that can generate the
complete crystal structure by
means of its symmetry

operations is called the crystal
asymmetric unit.

Three new
symmetry

operators are

Notice: exactly generated
two ducks In
the unit cell



Now let’s try it in three dimensions

positions
of 2-fold
axes A

Fig. 2.37 Symmetry and equivalent positions in space group P2. A
2-fold axis along b creates two asymmetric units in the unit cell. Each
unit has four 2-fold axes associated with it, at x,z = (0, 0) (black
circles), and at (0,1/2),(1/2, 0), (1/2,1/2) (open circles).

Fig. 2.38 A unit cell of space
group P2,

Space Group P2: P =“primitive,” 2 = two-fold rotation axis.

We call this type of crystal monoclinic. Order = 2.
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Can we create an operation that combines

Rotation
then
translation
IS a SCrew
axis.

bl
pX rr \/
pre w";

Mirroring
then
translation
IS a glide
plane.



The Screw AXIS

This symmetry operation
Is an m—fold rotation
followed by a translation.

The translation is a n/m
translation along one of
the major crystallo-
graphic directions, where
m 1S the order of the
major rotation axis: the
m,, SCrew axis.

Here, 1t’s written 2, 10
represent the two-fold
screw axis, and the
translation 1s .

pxrr W

Fig. 2.43 A P2, structure
viewed down the b direction. The
unshaded molecules are at y = 0,
and the shaded molecules at
¥y=1/2. There are 2-fold screw
axes at the corners of the unit
cell, and also at positions
indicated by white circles.

Fig. 2.44 Arrangement of units in
a P24 lattice. Units facing one way
are at the top and bottom of the
cell, those facing the other are
halfway in between. Objects A, B,
and C are related by a 2-fold screw
operation.




Centered Lattice

To make a new 200 oo 24

monoclinic lattice, shift caes RS0 s

the motif at the origin A A conventionalunit ce
along a diagonal to a new oA / \0‘

spot by a major fraction of =)
. B A '~
the unit cell edges. ': - E A
D
The lattice is “centered” ‘ o,
. rimitive unit ce L L S
because a new motif primive untest f ) h f
- ie. 2.39 A Cface centredmonocti 11 ONE “centers” the B face
appears in the center ofa |™** . ’
one simply generates a
face or of the body of the new P2 unit cell.

unit cell.

A
When P2 iS cccentered’, tO primitive unit cell
form C2, new 2, axes are N
,"3’(: face-centred
fo rm ed : Fig. 2.40 Summary of the « t" el
o symmetry of a C2 lattice. Screw ~
8% rr\ (\ axes are identified by single-

proteir
A \\ rystallography barbed arrows.




And higher symmetry

If one r_las t\_/vo—fold axes in more than one direction, It must be
th_ree directions, and the axes must be perpendicular. We call
this orthorhombic.

NN
?

N
b\

N\
Fig. 2.41 P222 has intersecting

sets of 2-fold axes in three
perpendicular directions.

Fig. 2.42 Molecular arrangement in space group P222, showing just a
few of the 2-fold axes.




And finally ...

A three-fold axis will produce a trigonal crystal.
Notice how the first three-fold axis creates two other

three-folds with different environments.

Fig. 2.28 if there is 3-fold
symmetry, the lattice is generated
by two lattice translations which
make an angle of 120° and are of
equal length. When objects are
arranged with 3-fold symmetry
about the lattice points, two other
types of 3-foid symmetry axis are
generated, indicated within the
outlined cell,




The Seven Crystal Systems

The combination of symmetry elements yields only these forms

Crystal Bravais External Minimum Unit Cell

System Types Symmetry Properties

Triclinic P None a, b, c, al, be, ga,

Monoclinic |P,C U 2B es, [l el o (o a, b, ¢, 90, be, 90
unique)

Orthorhombic E’ L F Three perpendicular 2-folds a, b, c, 90, 90, 90

Tetragonal P, I One 4-fold axis, parallel c a, 4, ¢, 90, 90, 90

Trigonal P*, R | One 3-fold axis a, 4, ¢, 90, 90, 120

Hexagonal P* One 6-fold axis a, 4, ¢, 90, 90, 120

Cubic p,F,| | Four 3-folds along space a, a, ,a, 90, 90, 90
diagonal

PO\ E * Note: P(hexagonal) = P(trigonal)



Manoclinic

Triclinic

The Bravalis
L_attices

Here are the 14 ways
crystal lattices can be
formed In the seven
crystal systems.

The international convention in
displaying these is to give a | e S
down, b across, and ¢ up or P Tetragonal | Trigonal/Hexagonal P Tngnnal R

towards the viewer. i N N —

i - - i, o
1 [ -
! | A s
pmmme e 1- L
i
, / | e b
bn ( ] | .'r.-"'-. )
pXrr ! YV P ¢
\"C,;lL.‘lllug" aphy . . )




How many space groups?
 There are 230 space groups possible

 Only 65 of these employ only rotational symmetry
(suitable for chiral molecules)

* Here are the most abundant observed in macromolecular
structures, 65% of the total:

sz;;gg?”p % of total
P2.2.2, 24.2
P3,21 & P3,21 15.2
P2, 13.8
C2 6.1
P4,2,2 5.4




And finally the icosahedral symmetry of

Fig. 2.19 Footballs are often
decorated in a way that shows
532 symmetry.

spherical viruses

Fig. 2.20 Fanciful drawing of left
hands arranged in 532 symmetry
by Don Caspar (reproduced from
Caspar (1980) by permission of
the Biophysical Society).

Fig. 2.21 Pseudo-symmetrical
arrangement of 180 units
(reproduced from Harrison
(1980) by permission of the
Biophysical Society).



How does symmetry affect a
diffraction pattern?

Symmetry affects a diffraction pattern in at least
three ways:

Friedel’s Law — There’s an inversion centre in
reciprocal space.

LLaue Point Group — Diffraction has symmetry like
that of the crystal.

Systematic absences — some of the symmetry
operations erase some reflections.



Friedel’s Law: Bragg reflection from the
front of the planes is the same as from the

back.

N
N

e

(-h, -k, -I)



_U_UQ— Can dcg__(d\}"ﬁ. q(qe, 6va:0=( /(.1
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*

khe
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Fv F = A+ B :
| /:*‘:-./4 - ¢ (6 | .
cnd ’FI__,_ (F‘F*)/": (A’»-Fg?j/z.
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LLaue Point Group: The diffraction will adopt
some of the symmetry of the crystal.

(-h, k, -I)

/ a  Let's say the
(1, 5, 2) and
¢ / (h, k, 1)

the (-1, 5 -2)




The Laue Point Group for a crystal Is
the rotational or mirror symmetry of the
space group, plus Friedel’s Law. For
example:

P2 or P2, —» 2/m

Produces a two-fold, a mirror
perpendicular to it, and an inversion
centre in the diffraction pattern /
reciprocal space.



:
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Lauc PW‘@T & Ong? 30\'- ng

Bijvoet
pair

Implication of this for the experiment:

One will need only to record 1/12 of reciprocal space
to get complete data. Sometimes one can record
anomalously-related reflections on the same
Image.
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6\! dtm-»?& T‘\c ﬂhﬂam \CZ(,YZV& ?2‘,

"2 .

Then, Use: Sih (AEY) = §inK: (059 £ COSKSG
aud  05(XLY) = (osk C08G + Shx- Sin g

[ g,eT:

Fipe™ 7\243 -cos2m (h+ L) [cos ey + z'sn‘zwkk]

ﬂ/z O(Q/
Om Contn S-‘ZCQZ“"T Fhk( - F;‘-u- as advetised

Also notice that for h O | data, there is NO imaginary part
to the structure factor. The structure factor is PURE

N REAL.



Outline for the Lecture

« Remind you how much you already know -- lenses, crystals

« Show why crystals give diffraction spots.

* Develop the 1dea of “The Reciprocal Lattice”

 Give some idea how we might actually measure diffraction
data

« Show how, given a crystal, we can calculate the diffraction
pattern

 Conversely, show how to calculate the structure from the
diffraction

» Describe the importance of symmetry to diffraction

 Outline the structure-solving methods -- heavy atoms
and MADness



How we solve structures? We must
somehow estimate phases so we can
perform the inverse Fourier transform.

 |somorphous Replacement with heavy atoms
« MAD/SAD, a variant of IR

« Molecular replacement if we have a decent model.



Perutz’s Fundamental Idea:
Isomorphous Replacement

Fon =Fp+ Fy F

We find that, for some things, we can approximate
IF| with |Fpy - Fp|l. This often suffices for us to
solve for the positions of the heavy atom as if it
were a small-molecule structure.



So for some particular reflection and a particular
heavy atom, we can begin to find the phase:

Real gars

Knowing the position of the heavy atom allows us to
calculate F,,. Then we use F, = Fp, + (-)F, to show that the
phase triangles close with a two-fold ambiguity, at G and
at H. There are several ways to resolve the ambiguity.



One way to resolve the ambiguity Is to use a
second i1Isomorphous heavy-atom derivative.

i |r1'|'_|l_j||l|1|

pxrr ¥
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A second technique involves use of anomalous
(resonant) scattering from a heavy atom.

In this case the resonance
between the electrons on the
heavy atom and the x-rays
cause a phase and amplitude
shift. The symmetry of
diffraction (from the front vs
back of the Bragg planes) is
broken. Friedel’s Law is
broken! This can be measured
and used.




f and f" for seleno-methionyl GH5 Scattering Power
B
| A, I f°

Af
Af’

St [

g | |
! » Excitation Scans

| We can observe the f* by measuring
N the absorption of the x-rays by the f

Imaginary

f* (electrons)
Lo

[ “““*\ ~_jatom. We measure an “excitation”

8 6 . [ | spectrum. Often we us the

= sl ' fluorescence of the absorbing atom as
10 1 a measure of a_lbsorptlwty.

ATTayS as a rarrctaurr ur T

TS24 125 126 127 128 129 phOtOn ENErgy.

Xray Energy (keV)
From Ramakrishnan's study of GH5

pXr



f and f" for seleno-methionyl GH5 Scattering Power

6 , x >\“ fo

5+ b : S Af
".;1,:7)" 4 illl .§ ,Af”
o : 'I'.;/K\U—“Mw E
- 5 | | T

f

‘ _ How to get 1°?

0

’ | The “real,” dispersive component is

-2

calculated from f’ by the Kramers- f

\ w Kronig relationship. Very roughly, it's
[ |the negatlve flrst derlvatlve of f".

f' (electrons)
(93]

) ; | (Af”) of the scattering of
i A, | X-rays as a function of the

Y04 125 1268 127 128 129 photon energy.

Xray Energy (keV)
From Ramakrishnan's study of GH5

pXr



f' and " for seleno-methionyl GH5

A

f* (electrons)
Lo

f' (electrons)
(93]

12.4 12.5 12.6 12.7 12.8 12.9

Xray Energy (keV)
From Ramakrishnan's study of GH5

pXr

Scattering Power

\ o
- Af
k= :

Sy Af”
E

S ——

real
One way to represent
this resonance Is plots of
the shifts in the real part
(Af”) and imaginary part
(Af”) of the scattering of
X-rays as a function of the
photon energy.
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The tunability of the synchrotron source
allows us to choose precisely the energy
(wavelength) we need.
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One can see how to choose wavelengths to get

large phase contrast for MAD phasing

0

T T r T
C e

-1 8

Maximum

N "/Real Signal

-[ﬁ
[\
L

L]
g T4D

|

a

Maximum
— — Imaginary

Signal

pXrT y Spectrum from Phizackerly, Hendrickson, et al. Study of Lamprey Haemoglobin.

\ \", ystallography



This Multiwavelength Anomalous Diffraction
method often gives very strong phase

Information and is the source of many new
structures.
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How do we find the heavy-
atom positions that allow us
to do MIR or MAD phasing?

There are generally two methods:
» Patterson-function methods
 Direct-phasing methods



Lindo Patterson saw that to interpret a diffraction
pattern, he could correlate the electron density with
Itself:

We comT N shoe Qox Pea) - \[[ PFY - p (Tl d
seb3, pa»f' (V) o
Px) - _\-/—1_ %; g FCS)@X‘F(—’LlltV"S))
, ( Z F3) Sap(-47T7 r-5 )) S (o §&)I

VPSS O AEY 2 oly o 3-8

. w"‘r?m- v Z For F65) eqpl-27vi-5T)

Moo, smce  |EI|FC-5)
Pc) - 5 z  E® o AT -F")

This Is the cosine transform of intensity!
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About the same time (all of this happened only a “short”
time ago, in the ’50s) David Harker saw a neat way to
approach “solving” the Patterson function:

Ve ks S5
T zﬁn{ e veedds G o ol Sxfpec] — M‘VK\
o rbmﬂ-mv}:

le - . / k 2y el
&WWT‘ZQM \r:}trfcd ‘7‘/(),[- Kjlﬂ-m&y;?

(X,%?:)-— ()?, [/Lf‘[) ?) = (1)’, 2, 22’)
T ,mu/ﬁ. vw/quﬁ k2 ol wrSe At @)=

@,l/‘z,w) _“"O'kﬂn_, V=/r s Y.

This method 1s the basis of software
such as HEAVY (Terwilliger)



To Recapitulate

 You already knew something -- lenses, crystals.

 Crystals give ordered arrays of diffraction spots because the
molecules are in ordered arrays.

* The Reciprocal Lattice is a mathematical metaphor for sets
of lattice planes that obey Braggs’ Law.

» We actually measure diffraction data just by rotating the crystal
In the x-ray beam and recording diffraction, a lot like a CAT
scan.

 Simple mathematics, which turns out to be the Fourier
transform, allows us to calculate the diffraction pattern

 and, conversely, to calculate the structure from the diffraction.

* The use of heavy atoms, and sometimes resonant effects, allow
us to measure phases to solve the structures.
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But | can tell you this, If you really
want to learn it...

Teach It!



